Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Oncol ; 26: 101543, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36126563

RESUMO

The bone-seeking radiopharmaceutical Xofigo (Radium-223 dichloride) has demonstrated both extended survival and palliative effects in treatment of bone metastases in prostate cancer. The alpha-particle emitter Ra-223, targets regions undergoing active bone remodeling and strongly binds to bone hydroxyapatite (HAp). However, the toxicity mechanism and properties of Ra-223 binding to hydroxyapatite are not fully understood. By exposing 2D and 3D (spheroid) prostate cancer cell models to free and HAp-bound Ra-223 we here studied cell toxicity, apoptosis and formation and repair of DNA double-strand breaks (DSBs). The rapid binding with a high affinity of Ra-223 to bone-like HAp structures was evident (KD= 19.2 × 10-18 M) and almost no dissociation was detected within 24 h. Importantly, there was no significant uptake of Ra-223 in cells. The Ra-223 alpha-particle decay produced track-like distributions of the DNA damage response proteins 53BP1 and É£H2AX induced high amounts of clustered DSBs in prostate cancer cells and activated DSB repair through non-homologous end-joining (NHEJ). Ra-223 inhibited growth of prostate cancer cells, independent of cell type, and induced high levels of apoptosis. In summary, we suggest the high cell killing efficacy of the Ra-223 was attributed to the clustered DNA damaged sites induced by α-particles.

2.
Sci Rep ; 10(1): 5923, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32246062

RESUMO

Oncogenic client-proteins of the chaperone Heat shock protein 90 (HSP90) insure unlimited tumor growth and are involved in resistance to chemo- and radiotherapy. The HSP90 inhibitor Onalespib initiates the degradation of oncoproteins, and might also act as a radiosensitizer. The aim of this study was therefore to evaluate the efficacy of Onalespib in combination with external beam radiotherapy in an in vitro and in vivo approach. Onalespib downregulated client proteins, lead to increased apoptosis and caused DNA-double-strands. Monotherapy and combination with radiotherapy reduced colony formation, proliferation and migration assessed in radiosensitive HCT116 and radioresistant A431 cells. In vivo, a minimal treatment regimen for 3 consecutive days of Onalespib (3 × 10 mg/kg) doubled survival, whereas Onalespib with radiotherapy (3 × 2 Gy) caused a substantial delay in tumor growth and prolonged the survival by a factor of 3 compared to the HCT116 xenografted control group. Our results demonstrate that Onalespib exerts synergistic anti-cancer effects when combined with radiotherapy, most prominent in the radiosensitive cell models. We speculate that the depletion and downregulation of client proteins involved in signalling, migration and DNA repair mechanisms is the cause. Thus, individually, or in combination with radiotherapy Onalespib inhibits tumor growth and has the potential to improve radiotherapy outcomes, prolonging the overall survival of cancer patients.


Assuntos
Benzamidas/farmacologia , Quimiorradioterapia/métodos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Isoindóis/farmacologia , Neoplasias/terapia , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Benzamidas/uso terapêutico , Movimento Celular/efeitos dos fármacos , Movimento Celular/efeitos da radiação , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Células HCT116 , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Isoindóis/uso terapêutico , Camundongos , Neoplasias/patologia , Tolerância a Radiação/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
PLoS One ; 13(12): e0209594, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30592737

RESUMO

DNA double-strand breaks (DSBs) are the most deleterious lesions that can arise in cells after ionizing radiation or radiometric drug treatment. In addition to prompt DSBs, DSBs may also be produced during repair, evolving from a clustered DNA damaged site, which is composed of two or more distinct lesions that are located within two helical turns. A specific type of cluster damage is the heat-sensitive clustered site (HSCS), which transforms into DSBs upon treatment at elevated temperatures. The actual lesions or mechanisms that mediate the HSCS transformation into DSBs are unknown. However, there are two possibilities; either these lesions are transformed into DSBs due to DNA lesion instability, e.g., transfer of HSCS into single-strand breaks (SSBs), or they are formed due to local DNA structure instability, e.g., DNA melting, where two SSBs on opposite strands meet and transform into a DSB. The importance of these processes in living cells is not understood, but they significantly affect estimates of DSB repair capacity. In this study, we show that HSCS removal in human cells is not affected by defects in DSB repair or inhibition of DSB repair. Under conditions where rejoining of prompt DSBs was almost completely inhibited, heat-sensitive DSBs were successfully rejoined, without resulting in increased DSB levels, indicating that HSCS do not transfer into DSB in cells under physiological conditions. Furthermore, analysis by atomic force microscopy suggests that prolonged heating of chromosomal DNA can induce structural changes that facilitate transformation of HSCS into DSB. In conclusion, the HSCS do not generate additional DSBs at physiological temperatures in human cells, and the repair of HSCS is independent of DSB repair.


Assuntos
Quebras de DNA de Cadeia Dupla , Dano ao DNA , Temperatura Alta , Linhagem Celular Tumoral , Reparo do DNA , Eletroforese em Gel de Campo Pulsado , Humanos , Microscopia de Força Atômica
4.
Radiat Res ; 188(6): 597-604, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28952912

RESUMO

Uncontrolled generation of DNA double-strand breaks (DSBs) in cells is regarded as a highly toxic event that threatens cell survival. Radiation-induced DNA DSBs are commonly measured by pulsed-field gel electrophoresis, microscopic evaluation of accumulating DNA damage response proteins (e.g., 53BP1 or γ-H2AX) or flow cytometric analysis of γ-H2AX. The advantage of flow cytometric analysis is that DSB formation and repair can be studied in relationship to cell cycle phase or expression of other proteins. However, γ-H2AX is not able to monitor repair kinetics within the first 60 min postirradiation, a period when most DSBs undergo repair. A key protein in non-homologous end joining repair is the catalytic subunit of DNA-dependent protein kinase. Among several phosphorylation sites of DNA-dependent protein kinase, the threonine at position 2609 (T2609), which is phosphorylated by ataxia telangiectasia mutated (ATM) or DNA-dependent protein kinase catalytic subunit itself, activates the end processing of DSB. Using flow cytometry, we show here that phosphorylation at T2609 is faster in response to DSBs than γ-H2AX. Furthermore, flow cytometric analysis of T2609 resulted in a better representation of fast repair kinetics than analysis of γ-H2AX. In cells with reduced ligase IV activity, and wild-type cells where DNA-dependent protein kinase activity was inhibited, the reduced DSB repair capacity was observed by T2609 evaluation using flow cytometry. In conclusion, flow cytometric evaluation of DNA-dependent protein kinase T2609 can be used as a marker for early DSB repair and gives a better representation of early repair events than analysis of γ-H2AX.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Proteína Quinase Ativada por DNA/fisiologia , Citometria de Fluxo , Proteínas Nucleares/fisiologia , Processamento de Proteína Pós-Traducional , Linhagem Celular , Cromonas/farmacologia , DNA/efeitos da radiação , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Relação Dose-Resposta à Radiação , Eletroforese em Gel de Campo Pulsado , Raios gama , Histonas/fisiologia , Humanos , Morfolinas/farmacologia , Proteínas Nucleares/antagonistas & inibidores , Fosforilação/efeitos dos fármacos , Fosfotreonina/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Fatores de Tempo
5.
Oncotarget ; 6(34): 35652-66, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26452257

RESUMO

Overexpression of heat shock protein 90 (HSP90) is associated with increased tumor cell survival and radioresistance. In this study we explored the efficacy of the novel HSP90 inhibitor AT13387 and examined its radiosensitizing effects in combination with gamma-radiation in 2D and 3D structures as well as mice-xenografts. AT13387 induced effective cytotoxic activity and radiosensitized cancer cells in monolayer and tumor spheroid models, where low drug doses triggered significant synergistic effects on cell survival together with radiation. Furthermore, AT13387 treatment resulted in G2/M-phase arrest and significantly reduced the migration capacity. The expression of selected client proteins involved in DNA repair, cell-signaling and cell growth was downregulated in vitro, though the expression of most investigated proteins recurred after 8-24 h. These results were confirmed in vivo where AT13387 treated tumors displayed effective downregulation of HSP90 and its oncogenic client proteins.In conclusion, our results demonstrate that AT13387 is a potent new cancer drug and effective radiosensitizer in vitro with an excellent in vivo efficacy. AT13387 treatment has the potential to improve external beam therapy and radionuclide therapy outcomes and restore treatment efficacy in cancers that are resistant to initial therapeutic regimes.


Assuntos
Adenocarcinoma/radioterapia , Benzamidas/administração & dosagem , Carcinoma de Células Escamosas/radioterapia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Isoindóis/administração & dosagem , Radiossensibilizantes/administração & dosagem , Animais , Benzamidas/efeitos adversos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Isoindóis/efeitos adversos , Camundongos , Camundongos Nus , Radiossensibilizantes/efeitos adversos , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Mutat Res ; 769: 1-10, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25771720

RESUMO

Efficient and correct repair of DNA double-strand break (DSB) is critical for cell survival. Defects in the DNA repair may lead to cell death, genomic instability and development of cancer. The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is an essential component of the non-homologous end joining (NHEJ) which is the major DSB repair pathway in mammalian cells. In the present study, by using siRNA against DNA-PKcs in four human cell lines, we examined how low levels of DNA-PKcs affected cellular response to ionizing radiation. Decrease of DNA-PKcs levels by 80-95%, induced by siRNA treatment, lead to extreme radiosensitivity, similar to that seen in cells completely lacking DNA-PKcs and low levels of DNA-PKcs promoted cell accumulation in G2/M phase after irradiation and blocked progression of mitosis. Surprisingly, low levels of DNA-PKcs did not affect the repair capacity and the removal of 53BP1 or γ-H2AX foci and rejoining of DSB appeared normal. This was in strong contrast to cells completely lacking DNA-PKcs and cells treated with the DNA-PKcs inhibitor NU7441, in which DSB repair were severely compromised. This suggests that there are different mechanisms by which loss of DNA-PKcs functions can sensitize cells to ionizing radiation. Further, foci of phosphorylated DNA-PKcs (T2609 and S2056) co-localized with DSB and this was independent of the amount of DNA-PKcs but foci of DNA-PKcs was only seen in siRNA-treated cells. Our study emphasizes on the critical role of DNA-PKcs for maintaining survival after radiation exposure which is uncoupled from its essential function in DSB repair. This could have implications for the development of therapeutic strategies aiming to radiosensitize tumors by affecting the DNA-PKcs function.


Assuntos
Cromonas/farmacologia , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Morfolinas/farmacologia , Tolerância a Radiação/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Reparo do DNA/genética , Proteína Quinase Ativada por DNA/genética , Proteína Quinase Ativada por DNA/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Humanos , Mitose/efeitos dos fármacos , Mitose/genética , Mitose/efeitos da radiação , RNA Interferente Pequeno/farmacologia , Tolerância a Radiação/genética , Radiossensibilizantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...